
 

 

 

TIS-B: CALCULATION OF NAVIGATION ACCURACY CATEGORY FOR 
POSITION AND VELOCITY PARAMETERS 

Roxaneh Chamlou, MITRE/CAASD, McLean, VA 

Abstract 
Traffic Information Service - Broadcast (TIS-B) 

is a surveillance service that derives traffic 
information from one or more ground surveillance 
sources and broadcasts to Automatic Dependant 
Surveillance – Broadcast (ADS-B) equipped 
aircraft or surface vehicles, with the intention of 
supporting Aircraft Separation Assurance (ASA) 
applications.  ASA Minimum Aviation System 
Performance Standards (MASPS) require that the 
Navigation Accuracy Category for Position (NACP) 
and velocity (NACV) be reported so that ASA 
applications may determine whether the reported 
position and velocity have an acceptable level of 
accuracy for the intended use. This paper develops 
two methods to compute NACP and NACv. The two 
methods are denoted exact and bounded, and their 
performance is investigated in computing the 95% 
containment threshold for a broad range of values 
of elliptical eccentricity. The algorithms for the two 
methods can be easily implemented regardless of 
the eccentricity of the underlying uncertainty. 

The proposed algorithm computes NACP and 
NACV parameters for position and rate estimates 
that are derived from Kalman filter based 
estimators. These estimators provide a covariance 
matrix that is a measure of the uncertainty 
associated with the estimates. It is first shown that 
the covariance matrix computed by Kalman-based 
estimators can be partitioned into horizontal 
position and rate terms.  Eigenvalues can be 
computed for the partitioned covariance matrix to 
provide the squares of the major and minor axes of 
the representative uncertainty ellipses regardless of 
their orientation with respect to the reference frame. 
Conversion factors from the elliptical to circular 
bounds were computed for relative accuracy that 
accounts for random error only. A follow-on paper 
addresses absolute accuracy that in addition to 
random error accounts for uncorrected bias errors 
that may occur after an aircraft maneuver due to a 
position lag in the estimated positions. 

Introduction 
TIS-B is a surveillance service that derives traffic 

information from one or more ground surveillance 
sources and broadcasts to ADS-B equipped aircraft 
or surface vehicles, with the intention of supporting 
ASA applications.  Aircraft ASA MASPS require 
that the Navigation Accuracy Category for Position 
(NACP) and velocity (NACV) be reported so that 
ASA applications may determine whether the 
reported position and velocity have an acceptable 
level of accuracy for the intended use. Error 
statistics are needed for the calculation of NACP 
and NACV. Definitions of NACP and NACV are: 

NACP :  The Estimated Position Uncertainty 
(EPU) and Vertical Estimated Position 
Uncertainty (VEPU) are 95% accuracy bounds 
on horizontal and vertical positions, 
respectively. Each parameter is defined as the 
radius of a circle, centered on the reported 
position, such that the probability of the actual 
position being outside the circle is 0.05. NACP 
is an index to EPU and VEPU as defined by 
Table 3-6 in the ASA MASPS (Reference [1]).  

NACV :  NACV  is an index to the 95% 
accuracy category of the least accurate rate 
component as defined in Table 3-7 of ASA 
MASPS (Reference [1]). 

Kalman filter based estimators (e.g., those used 
by Sensis, STARS, MicroEARTS ) provide a 
measure of error statistics through their covariance 
matrices. A key assumption in this paper is that the 
horizontal random error of the position and velocity 
estimates derived by the TIS-B ground surveillance 
processor is accurately represented by a bivariate 
Gaussian process. The uncertainty of position and 
rate estimates derived from TIS-B surveillance 
sensors are often not spherical but ellipsoidal in 
space (elliptical in the horizontal plane) and rotated 
with respect to the reference coordinate frame. 
Because NAC is referenced to a circular bound that 
corresponds to the 95% uncertainty, a conversion 
from an elliptical to circular bound has to take 
place. 



 

 

 

The main result of this paper is an algorithm that 
exactly computes the 95% containment radius 
during the steady state phase of flight, two 
algorithms that approximate the 95% radius, and a 
comparison between the three methods. A follow-
up paper addresses the accuracy during the 
maneuver phase of the flight. 

An ellipse describes the 95% uncertainty region 
for a Gaussian process in the horizontal plane. 
Because errors are typically coupled between the 
components for any chosen reference coordinate 
frame at any given time, the ellipse will appear 
rotated, thus complicating the calculation of the 
major and minor axes. The coupling of errors 
between coordinate components is manifested in a 
covariance matrix that has non-zero off-diagonal 
components. Through a change of basis the 
covariance matrix can be diagonalized where the 
diagonal terms provide the squares of the major and 
minor axes of the corresponding 1-σ error ellipse, 
and where σ refers to the standard deviation of the 
Gaussian error. To convert the 1-σ error ellipse to a 
95% error ellipse, a conversion factor for the 
bivariate Gaussian process is computed. Finally, to 
convert the 95% error ellipse to a 95% error circle, 
two methods are examined, denoted by bounded 
and exact. For the bounded method, two techniques 
are examined.  The techniques  consist of basing the 
containment radius on (a) the root-sum-square 
(RSS) of the major and minor axes, or (b) only the 
major axis of the underlying error ellipse 
(circumscribed technique). It is shown that this 
method results in an uncertainty region that deviates 
from the 95% error containment threshold (up to 3 
%), where the deviation is proportional to the 
eccentricity of the underlying error ellipse. The 
exact method computes a containment radius that 
maintains the 95% error containment regardless of 
the eccentricity.  

Algorithm Development 
In this section, the exact and bounded methods 

for computing the 95% uncertainty radius (to which 
NAC is an index) are developed and compared. 
Both methods derive a circular uncertainty bound 
from information provided by the covariance matrix 
that is computed in a Kalman based estimator. The 
exact method uses variable conversion factors to 
convert from the 1-σ ellipse to a containment radius 

that maintains a 95% containment goal (as defined 
by the NAC parameter). Algorithms are provided to 
implement the exact method.  A real-time 
computation of the ratio of the elliptical axes 
regardless of the rotation of the ellipse with respect 
to the reference coordinate frame is provided, as 
well as off-line conversion factors that are captured 
as a look-up table or an equation as a function of 
the major-to-minor axes ratio. The bounded method 
uses a fixed conversion factor to arrive at a 
containment radius from the 1-σ ellipse.  

Definition of the Covariance Matrix 
A Kalman based estimator provides a measure of 

the estimation accuracy through a covariance 
matrix. The covariance matrix is defined in terms of 
the zero-mean Gaussian estimation vector, Ek, that 
is the difference between the measured and 
predicted quantities (also called the residual vector). 

Let  
Ek  =  4 x1 vector of the horizontal random 

error ( position and rate) between the state 
and the “best” estimate of the state  based 
on all measurements at to, t1, …, tk.  

μk = 4x1 vector of the mean for the horizontal 
error (it is set to 0 for relative accuracy and 
non-zero for absolute accuracy). 

Cov[Ek]  =  4 x 4 error covariance matrix 
(linearized in the case of an Extended 
Kalman Filter). 
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where (Δx, Δy) are the position and ),( yx && ΔΔ  are 
the rate errors in the horizontal plane. 
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where “T” denotes the transpose of a matrix. 

Justification for Partitioning the Covariance 
Matrix 

The covariance matrix can be partitioned into 
position and rate terms such that for position terms 
we can define the following submatrices: 

 y]x[pos ΔΔ=E  
(3) 
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The justification for partitioning lies in a property 
of the multivariate Gaussian distribution (Reference 
[2]): 

Theorem: Let E1 be any k components of a 
multivariate Gaussian vector E with mean vector μ 
and covariance P. Then, E1 is itself a multivariate 
Gaussian vector with mean vector μ1 and 
covariance matrix P11, where μ1 and P11 are 
appropriately constructed from μ and P.  

Similarly, for rate terms we can define  

 ]yx[rate && ΔΔ=E  
(5) 
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Now the problem of estimating the uncertainty 
region for position and rate can be analyzed 
separately. 

Derivation of the 1-σ Uncertainty Ellipse from 
the Covariance Matrix and Calculation of its 
Major and Minor Axes 

This section shows how a 1-σ error uncertainty 
ellipse that may be rotated with respect to the 
reference coordinate frame is derived from the 
covariance matrix. It derives an algorithm for 
computing the major and minor axes of the 1-σ 

error ellipse regardless of the orientation of the 
ellipse. 

The bivariate Gaussian density of Epos and Erate 
may now be written as 
 
 
 
 
 
 
 
 
 

(7) 
 
 
 
 
 
 
 

(8) 

Standard notation is used here, that is upper case 
E refers to the random error vector, and lower case 
e refers to the independent variable (a vector) of the 
density function. The density fE(epos) will be 
constant over the plane for values of (Δx, Δy) such 
that the exponent, apos,  is fixed. These values of Δx 
and Δy define the points on an ellipse in the 
(Δx, Δy) plane (Reference [2]).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(9) 

The major axis of the ellipse is at angle θ  to the 
Δx axis (see Figure 1), calculated as 
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Figure 1.  Ellipse Represented in Reference and 
Transformed Coordinate Frames 

Similarly, the density fE(erate) will be constant 
over the plane for values of ),( yx && ΔΔ such that the 
exponent, arate,, is fixed. These values of 

yx && ΔΔ and  define the points on an ellipse in 
the ),( yx && ΔΔ plane.  
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The major axis of the ellipse is at angle  
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to the x&Δ  axis.  

Equations (9) and (11) present ellipses that are 
rotated by an angle θ. The covariance P is a 
nonsingular matrix, so there exists a similarity 
transformation A such that 

 
1ΛP −= AA  

(13) 

where A is formed from the eigenvectors of P 
associated respectively with the eigenvalues λi, 
where λi is the (i,i) element of the diagonal matrix 
Λ.  

Substituting (13) into (9) and (11) yields 
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where NNNN yxyx && ΔΔΔΔ ,,,  are components 
expressed in transformed coordinate frames (for 
position and rate error) for which the error ellipses 
are orthogonal. In Equations (14) and (15) the 
relationship 

 m
T

Nm eAe =, , where m = pos or rate 
(16) 

describes a change of basis in rotation only, thus 
det(A) = 1 or –1 and A-1 = AT. 

It can be seen from Equations (14) and (15) that 
for a = 1, the transformed ellipse has the familiar 
expression of an ellipse whose minor and major 
axes are aligned with the coordinate frame: 
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The relations between axismajor and axisminor are 
illustrated in Figure 1. Comparing Equation (17) to 
Equations (14) or (15), it is apparent that the 
eigenvalues, λ1 and λ2, are the squares of the major 
and minor axes.  

The eigenvalues, λ1 and λ2, of a symmetric 2x2 
matrix 
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are given by the equation: 
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Conversion of the 1-σ Ellipse to the 95% 
Ellipse 

In this section, the scaling of the axes of the 1-σ 
error ellipse (computed from the eigenvalues) to 
achieve the 95% error ellipse is derived. First, 
beginning with Equation (20), the probability 
density (rotated for independence) is integrated over 
the ellipse bounded by kσx and kσy to calculate the 
desired probability, P.  
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Next apply a change of variable. Let 

yx

yvxu
σσ

==   , , then (20) becomes 

 

dudv

vu

e
kvuvu

P
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

+−

∫∫
<+

=
2

2

2

2

222:,
2
1 
π

 
(21) 

Next, apply a change of variable. Let 
,  and  ,sin ,cos θθθ rdrddudvrvru === then 
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Solving (22) for k  yields the desired conversion 
factor. 

 )1ln(2 Pk −−=   
(23) 

 4477.2 ,950for  ==⇒ k.P  
(24) 

As shown in Equation (22), the conversion factor 
of 2.4477 applied to both axes will convert the 1-σ 
to the 95% error ellipse when the bivariate Gaussian 
density function is aligned with the coordinate 
frame.  

Derivation of Methods for Computing 95% 
Uncertainty Radius from the 1-σ Uncertainty 
Ellipse 
In this section, the exact and bounded methods for 
converting the 1-σ uncertainty ellipse to a 95% 
uncertainty radius are derived and compared.  

Exact Method 
The probability of containing the error over a 
circular region is given by Equation (25), where, as 
before, the coordinates are rotated for 
independence. Note the difference between 
Equations (25) and (20) is in the limits of 
integration, i.e., in Equation (20) the limits are 
defined be a circle of radius kσy. Unlike Equation 
(20), the solution to Equation (25) cannot be found 
in a closed form and requires the numerical 
integration of the probability density function 
derived next.   
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Next, apply a change of variables 
, and ,sin ,cos θθθ rdrddudvrvru ===  then 

the area of integration, A, is given by 
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Solving for r, (27) becomes 
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and substituting into (26) yields 
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Equation (29) shows that the probability, P is a 
function of the conversion factor, k, and, more 
importantly, a function of the ratio σy/ σx (i.e., not 
the individual values for σy and σx). However, it is 

easier to perform the numerical integration via the 
substitutions shown below. Starting with Equation 
(25) where  
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Apply a change of variables. Let 
,rd and ,sin  , cos θθθ rddydxryrx === then 

then (30) becomes 
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A table, not shown here, was built from Equation 
(31) as a function of the ratio σmajor /σminor. The top 
half of Figure 2 depicts the conversion factor, k, as 
a function of the ratio σmajor /σminor and shows that 
for a circular uncertainty region, corresponding to 
ratio = 1, the conversion factor is 2.4477. As the 
uncertainty shape becomes more elongated, 
corresponding to increasing ratio of axes, the 
conversion factor becomes 1.9625. The bottom half 
of Figure 2 shows that for the variable conversion 
factors a stable and constant 95% containment is 
maintained. Figure 3 shows that the variable 
conversion factors can be approximated by the 
following expression: 

minor

major

33
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Figure 4 depicts the different error bounds: 1-σ 
elliptical in red, 95% elliptical in blue, and 95% 
circular in green. 

 



 

 

 

 

 

Figure 2.  Exact Method: Variable Conversion Factors and  
Fixed Containment Percentage as a Function of Ratio of Major-to-Minor Ellipse Axes 

 

Figure 3.  Exact Method: Approximation of the Variable Conversion Factors 

 



 

 

 

 

Figure 4.  Illustration of Error Bounds: 1-σ Elliptical,  
95% Elliptical, and 95% Circular Using the Exact Method 

 

Bounded Method  
The bounded method uses a fixed conversion 

factor to convert from the 1-σ error ellipse to an 
uncertainty radius. Two sub-techniques of this 
method, denoted by RSS and circumscribed, are 
investigated.  An RSS radius is computed by 
applying a fixed conversion factor to the root-sum-
squared of the standard deviation of the error in the 
horizontal plane (i.e., the trace of the covariance 
submatrix). A circumscribed radius is computed by 
applying a fixed conversion factor to the major axis 
of the 1-σ error ellipse. In both cases it will be 
shown that a fixed conversion factor will result in a 
circular containment region that deviates from the 
95% containment threshold, the deviation being 
dependent on the choice of conversion factor and 
elliptical eccentricity, i.e., no single conversion 
factor will render a 95% threshold over a range of 
plausible1 eccentricity values.  

                                                      
1 The range of ratios is from one to twelve.  The upper limit of 
12 is chosen to encompass the case of a single long range radar 
with azimuth accuracy of +/-0.176 deg and range accuracy of 
+/-1/16 nmi.  At a maximum range of 250 nmi, the ratio of axes 
of the uncertainty ellipse is approximately 12 (=(250 
[nmi]*0.176 [deg]*pi/180 [rad/deg])/(1/16 [nmi])) 

The RSS technique computes a radius of 
containment as follows: 

( ) ( ) 2222 ** yxyxk kkkRSS σσσσ +=+=  
(33) 

where  

σx, σy are components in the covariance submatrix 
as defined in Equation (4) and shown in Figure 1. 

k is a conversion factor that scales the 1-σ 
containment up to 95% containment. Note that 
Equation (33) is the trace of the covariance 
submatrix scaled by a factor k. In linear algebra, the 
trace of an n-by-n square matrix P is defined to be 
the sum of the elements on the main diagonal (the 
diagonal from the upper left to the lower right) of P, 
i.e.  
 tr(P) = P[1,1] + P[2,2] + ... + P[n,n].  

(34) 

It is interesting to note that calculating the RSS 
radius does not require finding the major and minor 
axes of the ellipse (i.e., the square roots of λ1 and 
λ2) and can use the component of a covariance 
matrix that has not been diagonalized (i.e., σx and 
σy). This is explained as follows. Recall that the 



 

 

 

transformation from the rotated ellipse to the 
orthogonal ellipse shown earlier involves the 
operation 1ΛP −= AA (see Equation 13). Because 
A is an invertible matrix (rotation matrices are 
always invertible), P and Λ are similar, and by the 
cyclic property of the trace,  
 tr(P) = tr(Λ). 

(35) 

Thus, Equation (33) is equivalent to  

( ) ( ) 21

2

2

2

1 ** λλλλ +=+= kkkRSSk  
(36) 

Although the axes of the ellipse do not have to be 
known to compute the RSS radius, the containment 
region derived from the RSS radius will vary for 
any chosen (fixed) conversion factor, k, depending 
on the ratio of the ellipse axes. The relationship 
between the probability of containment and k is 
derived below in Equation (37). Note that the 
differences between Equation (37) and previously 
derived Equations (20) and (25) are in the limits of 
integration. Equation (20) integrates over an ellipse 
and has an analytic solution. Equation (25) 
integrates over a circle of radius kσy and requires 
numerical integration because it does not have an 
analytical solution. Equation (37) integrates over a 
circle of radius k(σx

2
+σ y

2)0.5 and requires numerical 
integration.  
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Next, apply a change of variables. Let 
, and  ,sin  , cos θθθ rdrddudvrvru ===  then 

the area of integration, A, is given by 
( )222222222 sincos xyx ykrrA σσθσθσ +<+=  

(39) 

Solving for r in (39) yields 
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After the change of variables, Equation (40) 

becomes 
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Equation (41) shows that the probability, P is a 
function of the conversion factor, k, and, more 
importantly, a function of the ratio σy/ σy (i.e., not 
the individual values for σy and σy). However, it is 
easier to perform the numerical integration via the 
substitutions shown below: 
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Next, apply a change in variable. Let 
, and  ,sin  , cos θθθ rdrddydxryrx ===  then 
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Figure 5 depicts the different error bounds: 1-σ 
elliptical in red, 95% elliptical in blue, and RSS 
circular in green. Figures 6 and 7 illustrate the 
containment region as a function of the ratio of 
major-to-minor ellipse axes for two conversion 
factors, k = 2.4477, 1.9625. The choice of these two 



 

 

 

values was taken from the results of an earlier 
section, where it was shown that to achieve a 95% 
circular containment these two thresholds bounded 
the required value of k (from circular to highly 
elongated ellipse for the underlying uncertainty). 
Comparing Figures 6 and 7 indicates that the choice 
of k = 1.9625 achieves better performance than k = 
2.4477. For k = 1.9625 the containment region 
converges to 95% as the ratio increases and exceeds 
the threshold almost 3% when the ratio = 1, 
whereas for k= 2.4477 the containment region only 
approaches 98.6% as the ratio increases and 

exceeds the threshold almost 5% when the ratio = 
1.  

For the circumscribed bounded technique, the 
circular bound is set to the major axis of the 1-σ 
error ellipse scaled by a fixed factor. The 
performance for k = 1.9625 was unacceptable 
because the containment region fell below the 95% 
for low values of the ratio (i.e., ratio < 5).  For k = 
2.4477 the 95% error threshold is met exactly at 
ratio =1 , but quickly converges to 98.5% (i.e., for 
ratio ≥3), as shown in Figure 8. 

 

 

Figure 5.  Example of Error Bounds:1-σ Elliptical, 95% Elliptical, and Circular Using the RSS Method  
 

 

 

Figure 6.  RSS Technique: Containment Region as a Function of Ratio of  
Major-to-Minor Ellipse Axes Using a Fixed Conversion Factor =1.9625 



 

 

 

 

Figure 7.  RSS Technique: Containment Region as a Function of  
Ratio of Major-to-Minor Axes Using a Fixed Conversion Factor = 2.4477 

 

 

Figure 8.  Circumcised Technique: Containment Region as a Function of  
Ratio of Major-to-Minor Axes Using a Fixed Conversion Factor = 2.4477 

 
 



 

 

 
Comparison of Methods 

The exact method maintains a 95% containment 
threshold for all ratios. The real time processing is 
moderate and consists of solving for the 
eigenvalues and either storing a lookup table or 
computing an approximation (see Equation (32)). 
The circumscribed bounded technique also requires 
the eigenvalues to compute the major axis and 
provides the most conservative estimate for the 
containment bound.  The RSS bounded technique is 
the simplest of the three techniques and provides a 
less conservative estimate of the containment bound 
than the circumscribed technique. 

Algorithm Summary 
The algorithm for computing NAC for position 

and rate using the exact method can be summarized 
in three simple steps 

• Partition the covariance matrix into 
position-only and rate-only submatrices. 

• Find the eigenvalues of each submatrix. 
The positive square roots of the eigenvalues 
correspond to the major and minor axes of 
the 1-σ error ellipse in a rotated coordinate 
frame that is aligned with the axes.  

• Compute the ratio of the major to minor 
axes.  Use it as an index to a look-up table 
of conversion factors that have been 
computed off-line, or approximate the 
conversion factor from an expression 
[Equation (32)] that is a function of the 
axes. 

The algorithm for the bounded circumscribed 
technique can be summarized in three steps.  The 
first two steps are the same as the exact method. 
The third step is 

• Multiply the major axis by a constant 
conversion factor, k = 2.447.  

The algorithm for the bounded RSS technique 
can be summarized by three steps.  The first step is 
the same as the other two techniques.  The next two 
steps are [Equation (33)] 

• Compute the RSS of the diagonal 
components of the partitioned matrix 

• Multiply by constant conversion factor, k= 
1.9625.  

 

Example 
Given a 4x4 covariance matrix for the horizontal 

position and rate where the units of length and time 
are feet and seconds: 
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where d = don’t care, and the format is according to 
Equation (2), repeated here as Equation (45) for the 
reader’s convenience: 
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Partition the covariance matrix P into the 
submatrices Ppos and Prate where 
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To compute the eigenvalues of Ppos  
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Solving for the eigenvalues yields 
( ) ( ) ( )

2
53.176e-45577.6 54.84e5577.6 54.84e 22
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54159.250011.9 ;

21 +=+= ee λλ  
(50) 

The major and minor of the error ellipse are 
given by 



 

 

 

feet 5172491axisminor  ;feet 7417.958  axismajor 21 .==== λλ
 

(51) 

The ratio of major-to-minor ellipse axes for the 
position uncertainty can now be computed 

 1.95
5172.491
7417.958

==ratio  

(52) 
From Equation (32)  
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Thus, the radius of 95% containment is  
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ft
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From Table 3-6 in ASA MASPS this corresponds 
to NACP = 6. 

Similarly, for calculating NACV we first compute 
the major and minor axes of the 1-σ uncertainty 
ellipse  
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(57) 

The ratio of major to minor axes is  

 1.3 
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==ratio  

(58) 

From Equation (32) k = 2.1833, thus the radius 
of 95% containment is  
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From Table 3-7 in ASA MASPS this corresponds 
to NACV = 0. 

For the bounded circumscribed technique, the 
containment radius for position is (using results 
from Equation (51) 

i386033462            
74179584472

 nm. ft e.
ft . * .  axis  k * majorradius 

=+=
==  (60) 

and the containment radius for velocity is (using 
results from equation (58) 

smsftaxismajorkradius /26/8.34*447.2* ===  

(61)  

For the bounded RSS technique, the containment 
radius for position and rate (using the partitioned 
matrix from Equation (46) and (47)) 
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